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In This Lecture

 Why are arithmetic circuits so important

 Adders

 Adding two binary numbers

 Adding more than two binary numbers

 Circuits Based on Adders

 Multipliers

 Functions that do not use adders

 Arithmetic Logic Units
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Motivation: Arithmetic Circuits

 Core of every digital circuit

 Everything else is side-dish, arithmetic circuits are the heart of the digital 
system

 Determines the performance of the system

 Dictates clock rate, speed, area

 If arithmetic circuits are optimized performance will improve

 Opportunities for improvement

 Novel algorithms require novel combinations of arithmetic circuits, there 
is always room for improvement
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Example: ARM Microcontroller

 Most popular embedded
micro controller.

 Contains:

 Multiplier

 Accumulator

 ALU/Adder

 Shifter

 Incrementer
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Example: ARM Instructions
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Arithmetic Based Instructions of ARM
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Types of Arithmetic Circuits

 In order of complexity:

 Shift / Rotate

 Compare

 Increment / Decrement

 Negation

 Addition / Subtraction

 Multiplication

 Division

 Square Root

 Exponentation

 Logarithmic / Trigonometric Functions
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Relation Between Arithmetic Operators
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Addition

 Addition is the most important operation in computer 
arithmetic. Our topics will be:

 Adding 1-bit numbers : Counting bits

 Adding two numbers : Basics of addition

 Circuits based on adders : Subtractors, Comparators

 Adding multiple numbers : Chains of Adders

 Later we will also talk about fast adder architectures
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Half-Adder (2,2) Counter

 The Half Adder (HA) is the simplest arithmetic block

 It can add two 1-bit numbers, result is a 2-bit number

 Can be realized easily
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Full-Adder (3,2) Counter

 The Full Adder (FA) is the essential
arithmetic block

 It can add three 1-bit numbers, result 
is a 2-bit number

 There are many realizations both at 
gate and transistor level.

 Since it is used in building many 
arithmetic operations, the 
performance of one FA influences the 
overall performance greatly.
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Adding Multiple 1-bit Numbers
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Adding Multiple Digits

 Similar to decimal addition

 Starting from the right, each digit is added

 The carry from one digit is added to the digit to the left
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Adding Multiple Digits

 Similar to decimal addition

 Starting from the right, each digit is added

 The carry from one digit is added to the digit to the left
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Ripple Carry Adder (RCA)
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Curse of the Carry

The most significant outputs of the adder
depends on the least significant inputs
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Adding Multiple Numbers

 Multiple fast adders not a good idea

 If more than 2 numbers are to be added, multiple fast adders are not 
really efficient

 Use an array of ripple carry adders

 Popular and efficient solution

 Use carry save adder trees

 Instead of using carry propagate adders (the adders we have seen so far), 
carry save adders are used to reduce multiple inputs to two, and then a 
single carry propagate adder is used to sum up.
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Array of Ripple Carry Adders
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Carry Save Principle

 Reduces three numbers to two with a single gate delay

C + S = E + F + G
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Carry Save Principle

Z = D + E + F + G + H

 An array of carry save 
adders reduce the inputs to 
two

 A final (fast) carry propagate 
adder (CPA) merges the two 
numbers

 Performance mostly 
dictated by CPA
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Multipliers

 Largest common arithmetic block

 Requires a lot of calculation

 Has three parts

 Partial Product Generation

 Carry Save Tree to reduce partial products

 Carry Propagate Adder to finalize the addition

 Adder performance (once again) is important

 Many optimization alternatives
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Decimal Multiplication
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Binary Multiplication
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For n-bit Multiplier m-bit Multiplicand

 Generate Partial Products

 For each bit of the multiplier the partial product is either

 when ‘0’: all zeroes

 when ‘1’: the multiplicand

achieved easily by AND gates

 Reduce Partial Products

 This is the job of a carry save adder  

 Generate the Result (n + m bits)

 This is a large, fast Carry Propagate Adder
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Parallel Multiplier
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Parallel Multiplier
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Operations Based on Adders

 Several well-known arithmetic operation are based on adders:

 Negator

 Incrementer

 Subtracter

 Adder Subtracter

 Comparator
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Negating Two’s Complement Numbers

 To negate a two’s 
complement number

-A = A + 1

 All bits are inverted

 One is added to the result

 Can be realized easily by an 
adder.

 B input is optimized away
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Incrementer

 B input is zero

 Carry In (Cin) of the adder 
can be used as the 
Increment (Inc) input

 Decrementer similar in 
principle
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Subtracter

 B input is inverted

 Cin of the adder is used to 
complement B
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Subtracter

 B input is inverted

 Cin of the adder is used to 
complement B

 It can be made 
programmable so that both 
additions and subtractions 
can be performed at the 
same time 
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Comparator

 Based on a Subtractor

(A  = B) = EQ

(A != B) = EQ

(A >  B) = GE EQ

(A >= B) = GE

(A <  B) = GE

(A <= B) = GE + EQ
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Functions Realized Without Adders

 Not all arithmetic functions are realized by using adders

 Shift / Rotate Units

 Binary Logic functions are also used by processors

 AND

 OR

 XOR

 NOT

These are implemented very easily
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Shifters

 Logical shifter: shifts value to left or right and fills empty 
spaces with 0’s

 Ex: 11001 >> 2 = ??

 Ex: 11001 << 2 = ??

 Arithmetic shifter: same as logical shifter, but on right shift, 
fills empty spaces with the old most significant bit (msb).

 Ex: 11001 >>> 2 = ??

 Ex: 11001 <<< 2 = ??

 Rotator: rotates bits in a circle, such that bits shifted off one 
end are shifted into the other end

 Ex: 11001 ROR 2 = ??

 Ex: 11001 ROL 2 = ??
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Shifters

 Logical shifter: shifts value to left or right and fills empty 
spaces with 0’s

 Ex: 11001 >> 2 = 00110

 Ex: 11001 << 2 = 00100

 Arithmetic shifter: same as logical shifter, but on right shift, 
fills empty spaces with the old most significant bit (msb).

 Ex: 11001 >>> 2 = 11110

 Ex: 11001 <<< 2 = 00100

 Rotator: rotates bits in a circle, such that bits shifted off one 
end are shifted into the other end

 Ex: 11001 ROR 2 = 01110

 Ex: 11001 ROL 2 = 00111
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Shifter Design
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Shifters as Multipliers and Dividers

 A left shift by N bits multiplies a number by 2N

 Ex: 00001 << 2  = 00100  (1 × 22 = 4)

 Ex: 11101 << 2  = 10100  (-3 × 22 = -12)

 The arithmetic right shift by N divides a number by 2N

 Ex: 01000 >>> 2 = 00010  (8 ÷ 22 = 2)

 Ex: 10000 >>> 2 = 11100  (-16 ÷ 22 = -4)
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Other Functions

 We have covered 90% of the arithmetic functions commonly 
used in a CPU

 Division

 Dedicated architectures not very common

 Mostly implemented by existing hardware (multipliers, subtractors
comparators) iteratively

 Exponential, Logarithmic, Trigonometric Functions

 Dedicated hardware (less common)

 Numerical approximations:

exp(x) = 1 + x2/2! + x3/3! + …

 Look-up tables (more common)
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Arithmetic Logic Unit

The reason why we study digital circuits:
the part of the CPU that does something (other than copying data)

 Defines the basic operations that the CPU can perform directly

 Other functions can be realized using the existing ones iteratively. (i.e. 
multiplication can be realized by shifting and adding)

 Mostly, a collection of resources that work in parallel.

 Depending on the operation one of the outputs is selected
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Example: Arithmetic Logic Unit (ALU), pg243

ALU

N N

N

3

A B

Y

F

F2:0 Function

000 A & B

001 A | B

010 A + B

011 not used

100 A & ~B

101 A | ~B

110 A - B

111 SLT



Carnegie Mellon

41

Example: ALU Design
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Set Less Than (SLT) Example

 Configure a 32-bit ALU for the set if 
less than (SLT) operation.  Suppose 
A = 25 and B = 32.

 A is less than B, so we expect Y to be the 
32-bit representation of 1 
(0x00000001).
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Set Less Than (SLT) Example

 Configure a 32-bit ALU for the set if 
less than (SLT) operation.  Suppose 
A = 25 and B = 32.

 A is less than B, so we expect Y to be the 
32-bit representation of 1 
(0x00000001).

 For SLT, F2:0 = 111.

 F2 = 1 configures the adder unit as a 
subtracter. So 25 - 32 = -7.

 The two’s complement representation of 
-7 has a 1 in the most significant bit, so 
S31 = 1.

 With F1:0 = 11, the final multiplexer 
selects 
Y = S31 (zero extended) = 0x00000001
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What Did We Learn?

 How can we add, subtract, multiply binary numbers

 What other circuits depend on adders

 Subtracter

 Incrementer

 Comparator

 Important part of Multiplier

 Other functions (shifting)

 How is an Arithmetic Logic Unit constructed


