
Carnegie Mellon

1

Design of Digital Circuits 2014
Srdjan Capkun
Frank K. Gürkaynak

Adapted from Digital Design and Computer Architecture, David Money Harris & Sarah L. Harris ©2007 Elsevier

http://www.syssec.ethz.ch/education/Digitaltechnik_14

Arithmetic Circuits

Carnegie Mellon

2

In This Lecture

 Why are arithmetic circuits so important

 Adders

 Adding two binary numbers

 Adding more than two binary numbers

 Circuits Based on Adders

 Multipliers

 Functions that do not use adders

 Arithmetic Logic Units

Carnegie Mellon

3

Motivation: Arithmetic Circuits

 Core of every digital circuit

 Everything else is side-dish, arithmetic circuits are the heart of the digital
system

 Determines the performance of the system

 Dictates clock rate, speed, area

 If arithmetic circuits are optimized performance will improve

 Opportunities for improvement

 Novel algorithms require novel combinations of arithmetic circuits, there
is always room for improvement

Carnegie Mellon

4

Example: ARM Microcontroller

 Most popular embedded
micro controller.

 Contains:

 Multiplier

 Accumulator

 ALU/Adder

 Shifter

 Incrementer

Carnegie Mellon

5

Example: ARM Instructions

Carnegie Mellon

6

Arithmetic Based Instructions of ARM

Carnegie Mellon

7

Types of Arithmetic Circuits

 In order of complexity:

 Shift / Rotate

 Compare

 Increment / Decrement

 Negation

 Addition / Subtraction

 Multiplication

 Division

 Square Root

 Exponentation

 Logarithmic / Trigonometric Functions

Carnegie Mellon

8

Relation Between Arithmetic Operators

Carnegie Mellon

9

Addition

 Addition is the most important operation in computer
arithmetic. Our topics will be:

 Adding 1-bit numbers : Counting bits

 Adding two numbers : Basics of addition

 Circuits based on adders : Subtractors, Comparators

 Adding multiple numbers : Chains of Adders

 Later we will also talk about fast adder architectures

Carnegie Mellon

10

Half-Adder (2,2) Counter

 The Half Adder (HA) is the simplest arithmetic block

 It can add two 1-bit numbers, result is a 2-bit number

 Can be realized easily

Carnegie Mellon

11

Full-Adder (3,2) Counter

 The Full Adder (FA) is the essential
arithmetic block

 It can add three 1-bit numbers, result
is a 2-bit number

 There are many realizations both at
gate and transistor level.

 Since it is used in building many
arithmetic operations, the
performance of one FA influences the
overall performance greatly.

Carnegie Mellon

12

Adding Multiple 1-bit Numbers

Carnegie Mellon

13

Adding Multiple Digits

 Similar to decimal addition

 Starting from the right, each digit is added

 The carry from one digit is added to the digit to the left

Carnegie Mellon

14

Adding Multiple Digits

 Similar to decimal addition

 Starting from the right, each digit is added

 The carry from one digit is added to the digit to the left

Carnegie Mellon

15

Ripple Carry Adder (RCA)

Carnegie Mellon

16

Curse of the Carry

The most significant outputs of the adder
depends on the least significant inputs

Carnegie Mellon

17

Adding Multiple Numbers

 Multiple fast adders not a good idea

 If more than 2 numbers are to be added, multiple fast adders are not
really efficient

 Use an array of ripple carry adders

 Popular and efficient solution

 Use carry save adder trees

 Instead of using carry propagate adders (the adders we have seen so far),
carry save adders are used to reduce multiple inputs to two, and then a
single carry propagate adder is used to sum up.

Carnegie Mellon

18

Array of Ripple Carry Adders

Carnegie Mellon

19

Carry Save Principle

 Reduces three numbers to two with a single gate delay

C + S = E + F + G

Carnegie Mellon

20

Carry Save Principle

Z = D + E + F + G + H

 An array of carry save
adders reduce the inputs to
two

 A final (fast) carry propagate
adder (CPA) merges the two
numbers

 Performance mostly
dictated by CPA

Carnegie Mellon

21

Multipliers

 Largest common arithmetic block

 Requires a lot of calculation

 Has three parts

 Partial Product Generation

 Carry Save Tree to reduce partial products

 Carry Propagate Adder to finalize the addition

 Adder performance (once again) is important

 Many optimization alternatives

Carnegie Mellon

22

Decimal Multiplication

Carnegie Mellon

23

Binary Multiplication

Carnegie Mellon

24

For n-bit Multiplier m-bit Multiplicand

 Generate Partial Products

 For each bit of the multiplier the partial product is either

 when ‘0’: all zeroes

 when ‘1’: the multiplicand

achieved easily by AND gates

 Reduce Partial Products

 This is the job of a carry save adder

 Generate the Result (n + m bits)

 This is a large, fast Carry Propagate Adder

Carnegie Mellon

25

Parallel Multiplier

Carnegie Mellon

26

Parallel Multiplier

Carnegie Mellon

27

Operations Based on Adders

 Several well-known arithmetic operation are based on adders:

 Negator

 Incrementer

 Subtracter

 Adder Subtracter

 Comparator

Carnegie Mellon

28

Negating Two’s Complement Numbers

 To negate a two’s
complement number

-A = A + 1

 All bits are inverted

 One is added to the result

 Can be realized easily by an
adder.

 B input is optimized away

Carnegie Mellon

29

Incrementer

 B input is zero

 Carry In (Cin) of the adder
can be used as the
Increment (Inc) input

 Decrementer similar in
principle

Carnegie Mellon

30

Subtracter

 B input is inverted

 Cin of the adder is used to
complement B

Carnegie Mellon

31

Subtracter

 B input is inverted

 Cin of the adder is used to
complement B

 It can be made
programmable so that both
additions and subtractions
can be performed at the
same time

Carnegie Mellon

32

Comparator

 Based on a Subtractor

(A = B) = EQ

(A != B) = EQ

(A > B) = GE EQ

(A >= B) = GE

(A < B) = GE

(A <= B) = GE + EQ

Carnegie Mellon

33

Functions Realized Without Adders

 Not all arithmetic functions are realized by using adders

 Shift / Rotate Units

 Binary Logic functions are also used by processors

 AND

 OR

 XOR

 NOT

These are implemented very easily

Carnegie Mellon

34

Shifters

 Logical shifter: shifts value to left or right and fills empty
spaces with 0’s

 Ex: 11001 >> 2 = ??

 Ex: 11001 << 2 = ??

 Arithmetic shifter: same as logical shifter, but on right shift,
fills empty spaces with the old most significant bit (msb).

 Ex: 11001 >>> 2 = ??

 Ex: 11001 <<< 2 = ??

 Rotator: rotates bits in a circle, such that bits shifted off one
end are shifted into the other end

 Ex: 11001 ROR 2 = ??

 Ex: 11001 ROL 2 = ??

Carnegie Mellon

35

Shifters

 Logical shifter: shifts value to left or right and fills empty
spaces with 0’s

 Ex: 11001 >> 2 = 00110

 Ex: 11001 << 2 = 00100

 Arithmetic shifter: same as logical shifter, but on right shift,
fills empty spaces with the old most significant bit (msb).

 Ex: 11001 >>> 2 = 11110

 Ex: 11001 <<< 2 = 00100

 Rotator: rotates bits in a circle, such that bits shifted off one
end are shifted into the other end

 Ex: 11001 ROR 2 = 01110

 Ex: 11001 ROL 2 = 00111

Carnegie Mellon

36

Shifter Design

A
3:0

Y
3:0

shamt
1:0

>>

2

4 4

A
3

A
2

A
1

A
0

Y
3

Y
2

Y
1

Y
0

shamt
1:0

00

01

10

11

S
1:0

S
1:0

S
1:0

S
1:0

00

01

10

11

00

01

10

11

00

01

10

11

2

Carnegie Mellon

37

Shifters as Multipliers and Dividers

 A left shift by N bits multiplies a number by 2N

 Ex: 00001 << 2 = 00100 (1 × 22 = 4)

 Ex: 11101 << 2 = 10100 (-3 × 22 = -12)

 The arithmetic right shift by N divides a number by 2N

 Ex: 01000 >>> 2 = 00010 (8 ÷ 22 = 2)

 Ex: 10000 >>> 2 = 11100 (-16 ÷ 22 = -4)

Carnegie Mellon

38

Other Functions

 We have covered 90% of the arithmetic functions commonly
used in a CPU

 Division

 Dedicated architectures not very common

 Mostly implemented by existing hardware (multipliers, subtractors
comparators) iteratively

 Exponential, Logarithmic, Trigonometric Functions

 Dedicated hardware (less common)

 Numerical approximations:

exp(x) = 1 + x2/2! + x3/3! + …

 Look-up tables (more common)

Carnegie Mellon

39

Arithmetic Logic Unit

The reason why we study digital circuits:
the part of the CPU that does something (other than copying data)

 Defines the basic operations that the CPU can perform directly

 Other functions can be realized using the existing ones iteratively. (i.e.
multiplication can be realized by shifting and adding)

 Mostly, a collection of resources that work in parallel.

 Depending on the operation one of the outputs is selected

Carnegie Mellon

40

Example: Arithmetic Logic Unit (ALU), pg243

ALU

N N

N

3

A B

Y

F

F2:0 Function

000 A & B

001 A | B

010 A + B

011 not used

100 A & ~B

101 A | ~B

110 A - B

111 SLT

Carnegie Mellon

41

Example: ALU Design

+

2 01

A B

C
out

Y

3

01

F
2

F
1:0

[N-1] S

NN

N

N

N NNN

N

2

Z
e

ro

E
x
te

n
d

F2:0 Function

000 A & B

001 A | B

010 A + B

011 not used

100 A & ~B

101 A | ~B

110 A - B

111 SLT

Carnegie Mellon

42

Set Less Than (SLT) Example

 Configure a 32-bit ALU for the set if
less than (SLT) operation. Suppose
A = 25 and B = 32.

 A is less than B, so we expect Y to be the
32-bit representation of 1
(0x00000001).

+

2 01

A B

C
out

Y

3

01

F
2

F
1:0

[N-1] S

NN

N

N

N NNN

N

2

Z
e

ro

E
x
te

n
d

Carnegie Mellon

43

Set Less Than (SLT) Example

 Configure a 32-bit ALU for the set if
less than (SLT) operation. Suppose
A = 25 and B = 32.

 A is less than B, so we expect Y to be the
32-bit representation of 1
(0x00000001).

 For SLT, F2:0 = 111.

 F2 = 1 configures the adder unit as a
subtracter. So 25 - 32 = -7.

 The two’s complement representation of
-7 has a 1 in the most significant bit, so
S31 = 1.

 With F1:0 = 11, the final multiplexer
selects
Y = S31 (zero extended) = 0x00000001

+

2 01

A B

C
out

Y

3

01

F
2

F
1:0

[N-1] S

NN

N

N

N NNN

N

2

Z
e

ro

E
x
te

n
d

Carnegie Mellon

44

What Did We Learn?

 How can we add, subtract, multiply binary numbers

 What other circuits depend on adders

 Subtracter

 Incrementer

 Comparator

 Important part of Multiplier

 Other functions (shifting)

 How is an Arithmetic Logic Unit constructed

