
Carnegie Mellon

1

Design of Digital Circuits 2014
Srdjan Capkun
Frank K. Gürkaynak

Adapted from Digital Design and Computer Architecture, David Money Harris & Sarah L. Harris ©2007 Elsevier

http://www.syssec.ethz.ch/education/Digitaltechnik_14

Number Systems

Carnegie Mellon

2

What will we learn?

 How to represent fractions?

 Fixed point

 Floating point

 Very short:

 Adding floating point numbers

 Floating point in MIPS: F-type instructions

Carnegie Mellon

3

Number Systems

 For what kind of numbers do you know binary representations?

 Positive integers
Unsigned binary

 Negative integers
Sign/magnitude numbers
Two’s complement

 What about fractions?

Carnegie Mellon

4

Fractions: Two Representations

 Fixed-point: binary point is fixed

1101101.0001001

 Floating-point: binary point floats to the right of the most
significant 1 and an exponent is used

1.1011010001001 x 26

Carnegie Mellon

5

Fixed-Point Numbers

 Fixed-point representation using 4 integer bits and 3 fraction bits:

0110110
0110.110

= ?
interpreted as

Carnegie Mellon

6

Fixed-Point Numbers

 Fixed-point representation using 4 integer bits and 3 fraction bits:

 The binary point is not a part of the representation but is implied

 The number of integer and fraction bits must be agreed upon by
those generating and those reading the number

0110110
0110.110

= 22 + 21 + 2-1 + 2-2 = 6.75
interpreted as

Carnegie Mellon

12

Signed Fixed-Point Numbers

 Negative fractional numbers can be represented two ways:

 Sign/magnitude notation

 Two’s complement notation

 Represent -7.510 using an 8-bit binary representation with 4
integer bits and 4 fraction bits in Two’s complement:

 +7.5: 01111000

 Invert bits: 10000111

 Add 1 to lsb: 10001000

Carnegie Mellon

13

Floating-Point Numbers

 The binary point floats to the right of the most significant digit

 Similar to decimal scientific notation:

 For example, 27310 in scientific notation is

273 = 2.73 × 102

 In general, a number is written in scientific notation as:
± M × BE

Where:

 M = mantissa

 B = base

 E = exponent

 In the example, M = 2.73, B = 10, and E = 2

Carnegie Mellon

14

Floating-Point Numbers

 Example: represent the value 22810 using a 32-bit floating point
representation

 We show three versions; the final version is used in the IEEE
754 floating-point standard

Sign Exponent Mantissa

1 bit 8 bits 23 bits

Carnegie Mellon

15

Floating-Point Representation 1

 Convert the decimal number to binary:
22810 = 111001002 = 1.11001 × 27

 Fill in each field of the 32-bit number:

 The sign bit is positive (0)

 The 8 exponent bits represent the value 7

 The remaining 23 bits are the mantissa

0 00000111 11 1001 0000 0000 0000 0000

Sign Exponent Mantissa

1 bit 8 bits 23 bits

Carnegie Mellon

16

Floating-Point Representation 2

 First bit of the mantissa is always 1:
22810 = 111001002 = 1.11001 × 27

 Thus, storing the most significant 1, also called the implicit leading 1, is
redundant information

 Instead, store just the fraction bits in the 23-bit field
The leading 1 is implied

0 00000111 110 0100 0000 0000 0000 0000

Sign Exponent Fraction

1 bit 8 bits 23 bits

Carnegie Mellon

17

Floating-Point Representation 3 (IEEE)

 Bias for 8 bits = 12710 = 011111112

 Biased exponent = bias + exponent

 Exponent of 7 is stored as:

127 + 7 = 134 = 100001102

 The IEEE 754 32-bit floating-point representation of 22810

0 10000110

Sign Biased

Exponent
Fraction

1 bit 8 bits 23 bits

 110 0100 0000 0000 0000 0000

Carnegie Mellon

18

Floating-Point Example

Write the value -58.2510 using IEEE 754 32-bit floating-point standard

 First, convert the decimal number to binary:

58.2510 =

 Next, fill in each field in the 32-bit number:

 Sign bit:

 8 exponent bits:

 23 fraction bits:

Sign Exponent Fraction

1 bit 8 bits 23 bits

Carnegie Mellon

19

Floating-Point Example

Write the value -58.2510 using IEEE 754 32-bit floating-point standard

 First, convert the decimal number to binary:

58.2510 = 111010.012 = 1.1101001 × 25

 Next, fill in each field in the 32-bit number:

 Sign bit: 1 (negative)

 8 exponent bits: (127 + 5) = 13210 = 100001002

 23 fraction bits: 110 1001 0000 0000 0000 00002

In hexadecimal: 0xC2690000

1 100 0010 0 110 1001 0000 0000 0000 0000

Sign Exponent Fraction

1 bit 8 bits 23 bits

Carnegie Mellon

20

Floating-Point Numbers: Special Cases

 The IEEE 754 standard includes special cases for numbers that
are difficult to represent, such as 0 because it lacks an implicit
leading 1

 NaN (= Not a Number) is used for numbers that don’t exist,
such as sqrt(-1) or log(-5)

Number Sign Exponent Fraction

0 X 00000000 00000000000000000000000

∞ 0 11111111 00000000000000000000000

- ∞ 1 11111111 00000000000000000000000

NaN X 11111111 non-zero

Carnegie Mellon

21

Floating-Point Number Precision

 Single-Precision:

 32-bit notation

 1 sign bit, 8 exponent bits, 23 fraction bits

 bias = 127

 Double-Precision:

 64-bit notation

 1 sign bit, 11 exponent bits, 52 fraction bits

 bias = 1023

Carnegie Mellon

22

Floating-Point Numbers: Rounding

 Problems:

 Overflow: number is too large to be represented

 Underflow: number is too small to be represented

 Rounding modes:

 Down

 Up

 Toward zero

 To nearest

Carnegie Mellon

23

Floating-Point Numbers: Rounding Example

 Round 1.100101 (1.578125) so that it uses only 3 fractional bits

 Down:

 Up:

 Toward zero:

 To nearest:

Carnegie Mellon

24

Floating-Point Numbers: Rounding Example

 Round 1.100101 (1.578125) so that it uses only 3 fractional bits

 Down: 1.100

 Up: 1.101

 Toward zero: 1.100

 To nearest: 1.101 (1.625 is closer to 1.578125 than 1.5 is)

Carnegie Mellon

25

Floating-Point Addition

 Steps for floating point addition:

1. Extract exponent and fraction bits

2. Prepend leading 1 to form mantissa

3. Compare exponents

4. Shift smaller mantissa if necessary

5. Add mantissas

6. Normalize mantissa and adjust exponent if necessary

7. Round result

8. Assemble exponent and fraction back into floating-point format

 Not so easy as binary addition!

Carnegie Mellon

26

Floating-Point Addition: Example

 Add the following floating-point numbers:

0x3FC00000
0x40500000

Carnegie Mellon

27

Floating-Point Addition: Example

1. Extract exponent and fraction bits

 For first number (N1): S = 0, E = 127, F = .1

 For second number (N2): S = 0, E = 128, F = .101

2. Prepend leading 1 to form mantissa

 N1: 1.1

 N2: 1.101

0 01111111 100 0000 0000 0000 0000 0000

Sign Exponent Fraction

1 bit 8 bits 23 bits

0 10000000 101 0000 0000 0000 0000 0000

1 bit 8 bits 23 bits

Sign Exponent Fraction

Carnegie Mellon

28

Floating-Point Addition: Example

3. Compare exponents

127 – 128 = -1 so shift N1 right by 1 bit

4. Shift smaller mantissa if necessary

shift N1’s mantissa:
1.1 >> 1 = 0.11 (× 21)

5. Add mantissas

0.11 × 21

+ 1.101 × 21

10.011 × 21

Carnegie Mellon

29

Floating-Point Addition: Example

6. Normalize mantissa and adjust exponent if necessary

10.011 × 21 = 1.0011 × 22

7. Round result

No need (fits in 23 bits)

8. Assemble exponent and fraction back into floating-point format

S = 0, E = 2 + 127 = 129 = 100000012, F = 001100..

Written in hexadecimal: 0x40980000

0 10000001 001 1000 0000 0000 0000 0000

Sign Exponent Fraction

1 bit 8 bits 23 bits

Carnegie Mellon

30

Floating-Point Unit of ARM

Carnegie Mellon

31

Floating-Point Instructions

 Floating-point coprocessor (Coprocessor 1)

 Thirty-two 32-bit floating-point registers ($f0 - $f31)

 Double-precision values held in two floating point registers

 $f0 and $f1, $f2 and $f3, etc.

 So, double-precision floating point registers: $f0, $f2, $f4, etc.

Carnegie Mellon

33

F-Type Instruction Format

 Opcode = 17 (010001)2

 Single-precision: cop = 16 (010000)2

 add.s, sub.s, div.s, neg.s, abs.s, etc.

 Double-precision: cop = 17 (010001)2

 add.d, sub.d, div.d, neg.d, abs.d, etc.

 3 register operands:

 fs, ft: source operands

 fd: destination operands

op cop ft fs fd funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

F-Type

Carnegie Mellon

35

What did we learn

 How to express real numbers in binary

 Fixed point

 Floating point

 IEEE Standard to express floating point numbers

 Sign

 Exponent (biased)

 Mantissa

 Very short:

 Adding floating point numbers

 Floating point in MIPS: F-type instructions

