Number Systems

Design of Digital Circuits 2014 Srdjan Capkun Frank K. Gürkaynak

http://www.syssec.ethz.ch/education/Digitaltechnik_14

Adapted from Digital Design and Computer Architecture, David Money Harris & Sarah L. Harris ©2007 Elsevier

What will we learn?

- How to represent fractions?
- Fixed point
- Floating point
- Very short:
 - Adding floating point numbers
 - Floating point in MIPS: F-type instructions

Number Systems

For what kind of numbers do you know binary representations?

- Positive integers
 Unsigned binary
- Negative integers
 Sign/magnitude numbers
 Two's complement
- What about fractions?

Fractions: Two Representations

- Fixed-point: binary point is fixed 1101101.0001001
- Floating-point: binary point floats to the right of the most significant 1 and an exponent is used
 - 1.1011010001001 x 2^6

Fixed-Point Numbers

Fixed-point representation using 4 integer bits and 3 fraction bits:

0110110 interpreted as 0110.110 = ?

Fixed-Point Numbers

Fixed-point representation using 4 integer bits and 3 fraction bits:

	0110110
interpreted as	0110.110
	$= 2^2 + 2^1 + 2^{-1} + 2^{-2} = 6.75$

- The binary point is not a part of the representation but is implied
- The number of integer and fraction bits must be *agreed upon* by those generating and those reading the number

Signed Fixed-Point Numbers

Negative fractional numbers can be represented two ways:

- Sign/magnitude notation
- Two's complement notation
- Represent -7.5₁₀ using an 8-bit binary representation with 4 integer bits and 4 fraction bits in Two's complement:

+7.5: 01111000

- Invert bits: 10000111
- Add 1 to lsb: 10001000

Floating-Point Numbers

- The binary point floats to the right of the most significant digit
- Similar to decimal scientific notation:
 - For example, 273₁₀ in scientific notation is

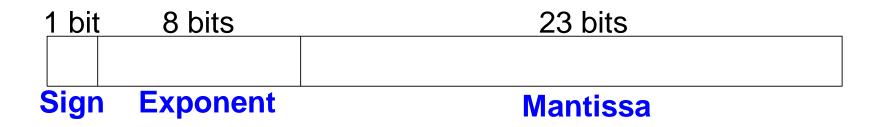
 $273 = 2.73 \times 10^2$

In general, a number is written in scientific notation as:
 ± M × B^E

Where:

- M = mantissa
- B = base
- E = exponent
- In the example, M = 2.73, B = 10, and E = 2

Floating-Point Numbers



- Example: represent the value 228₁₀ using a 32-bit floating point representation
- We show three versions; the final version is used in the IEEE
 754 floating-point standard

Floating-Point Representation 1

Convert the decimal number to binary: 228₁₀ = 11100100₂ = 1.11001 × 2⁷

Fill in each field of the 32-bit number:

- The sign bit is positive (0)
- The 8 exponent bits represent the value 7
- The remaining 23 bits are the mantissa

1 bit	<u>8 bits</u> 00000111	23 bits 11 1001 0000 0000 0000 0000		
Sign	Exponent	Mantissa		

Floating-Point Representation 2

First bit of the mantissa is always 1:

$228_{10} = 11100100_2 = 1.11001 \times 2^7$

 Thus, storing the most significant 1, also called the implicit leading 1, is redundant information

Instead, store just the fraction bits in the 23-bit field The leading 1 is implied

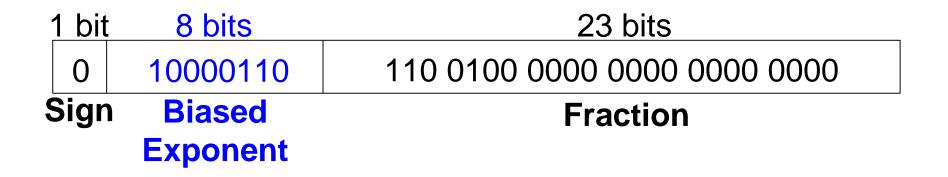
<u>1 bit</u>	8 bits	23 bits	
0	00000111	110 0100 0000 0000 0000 0000	
Sign	Exponent	Fraction	

Floating-Point Representation 3 (IEEE)

- Bias for 8 bits = 127_{10} = 01111111_2
- Biased exponent = bias + exponent
 - Exponent of 7 is stored as:

 $127 + 7 = 134 = 10000110_2$

The IEEE 754 32-bit floating-point representation of 228₁₀



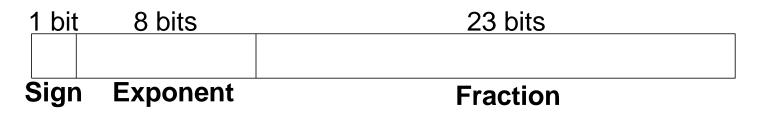
Floating-Point Example

Write the value -58.25₁₀ using IEEE 754 32-bit floating-point standard

First, convert the decimal number to binary:

 $58.25_{10} =$

- Next, fill in each field in the 32-bit number:
 - Sign bit:
 - 8 exponent bits:
 - 23 fraction bits:



Floating-Point Example

Write the value -58.25₁₀ using IEEE 754 32-bit floating-point standard

First, convert the decimal number to binary:

 $58.25_{10} = 111010.01_2 = 1.1101001 \times 2^5$

Next, fill in each field in the 32-bit number:

- Sign bit: 1 (negative)
- 8 exponent bits: $(127 + 5) = 132_{10} = 10000100_2$
- 23 fraction bits: 110 1001 0000 0000 0000 0000₂

<u>1 bit</u>	8 bits	23 bits	
1	100 0010 0	110 1001 0000 0000 0000 0000	
Sign	Exponent	Fraction	

In hexadecimal: 0xC2690000

Floating-Point Numbers: Special Cases

The IEEE 754 standard includes special cases for numbers that are difficult to represent, such as 0 because it lacks an implicit leading 1

Number	Sign	Exponent	Fraction
0	Х	00000000	000000000000000000000000000000000000000
∞	0	11111111	000000000000000000000000000000000000000
- ∞	1	11111111	000000000000000000000000000000000000000
NaN	Х	11111111	non-zero

NaN (= Not a Number) is used for numbers that don't exist, such as sqrt(-1) or log(-5)

Floating-Point Number Precision

Single-Precision:

- 32-bit notation
- 1 sign bit, 8 exponent bits, 23 fraction bits
- bias = 127

Double-Precision:

- 64-bit notation
- 1 sign bit, 11 exponent bits, 52 fraction bits
- bias = 1023

Floating-Point Numbers: Rounding

Problems:

- Overflow: number is too large to be represented
- Underflow: number is too small to be represented

Rounding modes:

- Down
- Up
- Toward zero
- To nearest

Floating-Point Numbers: Rounding Example

Round 1.100101 (1.578125) so that it uses only 3 fractional bits

- Down:
- Up:
- Toward zero:
- To nearest:

Floating-Point Numbers: Rounding Example

- Round 1.100101 (1.578125) so that it uses only 3 fractional bits
 - Down: **1.100**
 - Up: **1.101**
 - Toward zero: **1.100**
 - To nearest: **1.101** (1.625 is closer to 1.578125 than 1.5 is)

Floating-Point Addition

Steps for floating point addition:

- 1. Extract exponent and fraction bits
- 2. Prepend leading 1 to form mantissa
- 3. Compare exponents
- 4. Shift smaller mantissa if necessary
- 5. Add mantissas
- 6. Normalize mantissa and adjust exponent if necessary
- 7. Round result
- 8. Assemble exponent and fraction back into floating-point format

Not so easy as binary addition!

Add the following floating-point numbers:

0x3FC00000 0x40500000

1. Extract exponent and fraction bits

<u>1 bit</u>	8 bits	23 bits
0	01111111	100 0000 0000 0000 0000 0000
Sign	Exponent	Fraction
1 bit	8 bits	23 bits
1 bit 0	8 bits 10000000	23 bits 101 0000 0000 0000 0000 0000

- For first number (N1): S = 0, E = 127, F = .1
- For second number (N2): S = 0, E = 128, F = .101

2. Prepend leading 1 to form mantissa

- N1: **1.1**
- N2: 1.101

3. Compare exponents

127 – 128 = **-1** so shift N1 right by 1 bit

4. Shift smaller mantissa if necessary

shift N1's mantissa: 1.1 >> 1 = 0.11 (× 2¹)

5. Add mantissas

6. Normalize mantissa and adjust exponent if necessary

 $10.011 \times 2^1 = 1.0011 \times 2^2$

7. Round result

No need (fits in 23 bits)

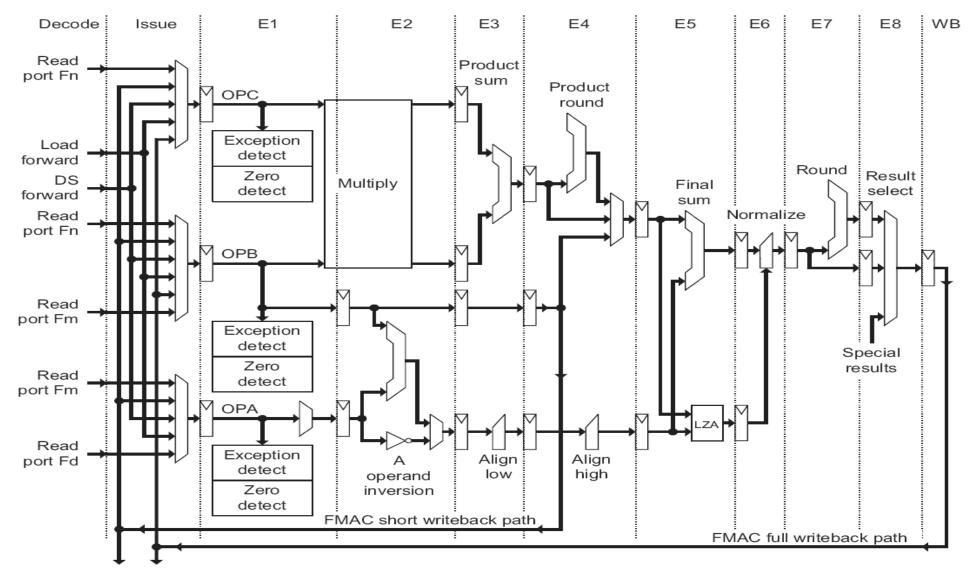
8. Assemble exponent and fraction back into floating-point format

 $S = 0, E = 2 + 127 = 129 = 10000001_2, F = 001100..$

Sign		Exponent	Fraction
	0	10000001	001 1000 0000 0000 0000 0000
1	bit	8 bits	23 bits

Written in hexadecimal: **0x40980000**

Floating-Point Unit of ARM



Floating-Point Instructions

- Floating-point coprocessor (Coprocessor 1)
- Thirty-two 32-bit floating-point registers (\$f0 \$f31)
- Double-precision values held in two floating point registers
 - \$f0 and \$f1, \$f2 and \$f3, etc.
 - So, double-precision floating point registers: \$f0, \$f2, \$f4, etc.

F-Type Instruction Format

F-Type

ор	сор	ft	fs	fd	funct
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

- Opcode = 17 (010001)₂
- *Single-precision*: cop = 16 (010000)₂
 - add.s, sub.s, div.s, neg.s, abs.s, etc.

Double-precision: cop = 17 (010001)₂

add.d, sub.d, div.d, neg.d, abs.d, etc.

3 register operands:

- fs, ft: source operands
- fd: destination operands

What did we learn

How to express real numbers in binary

- Fixed point
- Floating point

IEEE Standard to express floating point numbers

- Sign
- Exponent (biased)
- Mantissa

Very short:

- Adding floating point numbers
- Floating point in MIPS: F-type instructions