Number Systems

Design of Digital Circuits 2014
Srdjan Capkun
Frank K. Gurkaynak

http://www.syssec.ethz.ch/education/Digitaltechnik 14

Adapted from Digital Design and Computer Architecture, David Money Harris & Sarah L. Harris ©2007 Elsevier

What will we learn?

m How to represent fractions?
m Fixed point
m Floating point

m Very short:
= Adding floating point numbers
" Floating point in MIPS: F-type instructions

Number Systems

m For what kind of numbers do you know binary representations?

= Positive integers
Unsigned binary

= Negative integers
Sign/magnitude numbers
Two’s complement

m What about fractions?

Fractions: Two Representations

m Fixed-point: binary point is fixed
1101101.0001001

m Floating-point: binary point floats to the right of the most
significant 1 and an exponent is used

1.1011010001001 x 2°

Fixed-Point Numbers

m Fixed-point representation using 4 integer bits and 3 fraction bits:

0110110

interpreted as 90110.110
= ?

Fixed-Point Numbers

m Fixed-point representation using 4 integer bits and 3 fraction bits:

0110110
interpreted as 90110.110
=22 + 21 + 2°1 + 2°2 = 6.75

m The binary point is not a part of the representation but is implied

m The number of integer and fraction bits must be agreed upon by
those generating and those reading the number

Signed Fixed-Point Numbers

m Negative fractional numbers can be represented two ways:
= Sign/magnitude notation

= Two’s complement notation

m Represent -7.5,, using an 8-bit binary representation with 4
integer bits and 4 fraction bits in Two’s complement:
= +7.5: 01111000
" |nvert bits: 10000111
= Add 1 tosb: 10001000

Floating-Point Numbers

m The binary point floats to the right of the most significant digit

m Similar to decimal scientific notation:
= For example, 273, in scientific notation is
273 =2.73 x 102

m In general, a number is written in scientific notation as:
+ M x BE
Where:
" M = mantissa
= B =base

" E =exponent

m Inthe example, M=2.73,B=10,and E=2

Floating-Point Numbers

1 bit 8 bits 23 bits

Sign Exponent Mantissa

m Example: represent the value 228, , using a 32-bit floating point
representation

m We show three versions; the final version is used in the IEEE
754 floating-point standard

Floating-Point Representation 1

m Convert the decimal number to binary:
228,, = 11100100, = 1.11001 x 2’

m Fill in each field of the 32-bit number:
= The sign bit is positive (0)
= The 8 exponent bits represent the value 7
" The remaining 23 bits are the mantissa

1 bit 8 bits 23 bits

0| 00000111 11 1001 0000 0000 0000 0000

Sign Exponent Mantissa

Floating-Point Representation 2

m First bit of the mantissa is always 1:
228,, = 11100100, = 1.11001 x 2’

= Thus, storing the most significant 1, also called the implicit leading 1, is
redundant information

m Instead, store just the fraction bits in the 23-bit field
The leading 1 is implied

1 bit 8 bits 23 bits

0| 00000111 110 0100 0000 0000 0000 0000

Sign Exponent Fraction

Floating-Point Representation 3 (IEEE)

= Biasfor 8 bits =127,, = 01111111,

m Biased exponent = bias + exponent

= Exponent of 7 is stored as:

127 + 7 = 134 = 10000110,

m The IEEE 754 32-bit floating-point representation of 228,

1 bit 8 bits 23 bits
0 10000110 110 0100 0000 0000 0000 0000
Sign Biased Fraction

Exponent

Floating-Point Example

Write the value -58.25,, using IEEE 754 32-bit floating-point standard

m First, convert the decimal number to binary:
58.25,, =

m Next, fill in each field in the 32-bit number:
= Sign bit:
= 8 exponent bits:
= 23 fraction bits:

1 bit 8 bits 23 bits

Sign Exponent Fraction

Floating-Point Example

Write the value -58.25,, using IEEE 754 32-bit floating-point standard

m First, convert the decimal number to binary:
58.25,, = 111010.01, = 1.1101001 x 2°

m Next, fill in each field in the 32-bit number:
= Sign bit: 1 (negative)
= 8 exponent bits: (127 + 5) = 132,, = 10000100,
= 23 fraction bits: 110 1001 0000 0000 0000 0000,

1 bit 8 bhits 23 bits
1| 10000100 110 1001 0000 0000 0000 0000
Sign Exponent Fraction

In hexadecimal: 9xC2690000

Floating-Point Numbers: Special Cases

m The IEEE 754 standard includes special cases for numbers that
are difficult to represent, such as 0 because it lacks an implicit
leading 1

Number Sign Exponent Fraction

0 X 00000000 00000000000000000000000
©o 0 11111111 00000000000000000000000
- 0 1 11111111 00000000000000000000000
NaN X 11111111 non-zero

m NaN (= Not a Number) is used for numbers that don’t exist,
such as sqrt(-1) or log(-5)

Floating-Point Number Precision

m Single-Precision:
= 32-bit notation
= 1 sign bit, 8 exponent bits, 23 fraction bits
= bias=127

m Double-Precision:
" 64-bit notation

= 1 sign bit, 11 exponent bits, 52 fraction bits
" bijas =1023

Floating-Point Numbers: Rounding

m Problems:
= QOverflow: number is too large to be represented
= Underflow: number is too small to be represented

m Rounding modes:
" Down
= Up
= Toward zero

" To nearest

Floating-Point Numbers: Rounding Example

m Round 1.100101 (1.578125) so that it uses only 3 fractional bits

= Down:
= Up:
= Toward zero:

® To nearest:

Floating-Point Numbers: Rounding Example

m Round 1.100101 (1.578125) so that it uses only 3 fractional bits

= Down: 1.100
= Up: 1.101
= Toward zero: 1.100

" To nearest: 1.101 (1.625is closer to 1.578125 than 1.5 is)

Floating-Point Addition

m Steps for floating point addition:
1. Extract exponent and fraction bits
Prepend leading 1 to form mantissa
Compare exponents
Shift smaller mantissa if necessary
Add mantissas
Normalize mantissa and adjust exponent if necessary

Round result

0 NO e WN

Assemble exponent and fraction back into floating-point format

m Not so easy as binary addition!

Floating-Point Addition: Example

m Add the following floating-point numbers:

Ox3FCO0000
0x40500000

Floating-Point Addition: Example

1. Extract exponent and fraction bits

1 bit 8 bits 23 bits

0| O1l111111 100 0000 0000 0000 0000 0000
Sign Exponent Fraction
1 bit 8 bits 23 bits

0| 10000000 101 0000 0000 0000 0000 0000
Sign Exponent Fraction

= For first number (N1): S=9,E=127,F=.1
For second number (N2): S=0,E=128,F=.101

2. Prepend leading 1 to form mantissa
= NI1: 1.1

= N2: 1.101

Floating-Point Addition: Example

3. Compare exponents
127 - 128 = -1 so shift N1 right by 1 bit

4. Shift smaller mantissa if necessary

shift N1’s mantissa:
1.1 >> 1 =0.11 (x 21)

5. Add mantissas
9.11 x 21
+ 1.101 x 21
10.011 x 21

Floating-Point Addition: Example

6. Normalize mantissa and adjust exponent if necessary
10.011 x 21 = 1.0011 x 22

7. Round result
No need (fits in 23 bits)

8. Assemble exponent and fraction back into floating-point format
S=0,E=2+127=129 = 10000001,, F = 001100. .

1 bit 8 bits 23 bits
0| 10000001 001 1000 0000 0000 0000 0000
Sign Exponent Fraction

Written in hexadecimal: 9x40980000

Floating-Point Unit of ARM

Decode Issue E1 E2 E3
Read > > Product
port Fn " sum
: v OPCI 1 '
Load I =P Exception
forward > detect
DS Zero .
forward > I detect Multiply
Read N .
port Fn 1 | "
[=
L [MorB . _
. : | Ll L
L g
Read R N :V| >
port Fm 7 " J
Exception i
detect
Zero
Read _; ™ detect
port Fm i : : : :
B » : :
| .M opPa j ; ;
Read | - N - j ﬂ
port Fd ~ " Exception A Align
detect operand low
Zero inversion
detect
FMAC short writeback path

E4

Product
round

j_

Align
high

ES5S EG6
Final
sum

MNormal

LZA

o

ize

E7

Round

Sp

j_,\
Iy
™

ES8

Result
select

ecial

results

FMAC full writeback path

Floating-Point Instructions

m Floating-point coprocessor (Coprocessor 1)
m Thirty-two 32-bit floating-point registers ($f0 - $f31)

m Double-precision values held in two floating point registers
= $f0 and $f1, $f2 and $f3, etc.

= So, double-precision floating point registers: $£0, $f2, $f4, etc.

F-Type Instruction Format

F-Type
op cop ft fs fd funct
6 bits 5bits 5bits 5bits 5 bits 6 bits

m Opcode =17 (010001),

m Single-precision: cop =16 (010000),

= add.s, sub.s, div.s, neg.s, abs.s, etc.

m Double-precision: cop =17 (010001),

= add.d, sub.d, div.d, neg.d, abs.d, etc.

m 3register operands:
= fs, ft: source operands

= fd: destination operands

What did we learn

m How to express real numbers in binary
= Fixed point
= Floating point

m |EEE Standard to express floating point numbers
= Sign
= Exponent (biased)

" Mantissa

m Very short:
= Adding floating point numbers
" Floating point in MIPS: F-type instructions

