
Pay as you Browse: Microcomputations as
Micropayments in Web-based Services

Ghassan O. Karame
Dept. of Computer Science

ETH Zurich, Switzerland
karameg@inf.ethz.ch

Aurélien Francillon
Dept. of Computer Science

ETH Zurich, Switzerland
afrancil@inf.ethz.ch

Srdjan Čapkun
Dept. of Computer Science

ETH Zurich, Switzerland
capkuns@inf.ethz.ch

ABSTRACT

Currently, several online businesses deem that advertising
revenues alone are not sufficient to generate profits and are
therefore set to charge for online content. In this paper, we
explore a complement to the current advertisement model;
more specifically, we propose a micropayment model for non-
specialized commodity web-services based on microcompu-
tations. In our model, a user that wishes to access online
content offered by a website does not need to register or pay
to access the website; instead, he will accept to run micro-
computations on behalf of the website in exchange for access
to the content. These microcomputations can, for example,
support ongoing computing projects that have clear social
benefits (e.g., projects relating to HIV, dengue, cancer, etc.)
or can contribute towards commercial computing projects.
We argue that this micropayment model is economically and
technically viable and that it can be integrated in existing
distributed computing frameworks (e.g., the BOINC plat-
form). We implement a preliminary prototype of a system
based on our model through which we evaluate its perfor-
mance and usability. Finally, we analyze the security and
privacy of our proposal and we show that it ensures payment
for the content while preserving the privacy of users.

1. INTRODUCTION
In the last couple of years, the drop in Internet advertising

revenues [1,20] has generated a discussion on possible alter-
natives that will increase the revenues of online businesses
and shareholders. Some researchers [20] argue that the loss
in Internet revenues was not solely caused by the general
economic recession but also finds roots in the online adver-
tisement model itself. Studies have reported that users do
not trust online advertisements [2]; some users further use
tools to block them.
Given this, several websites are set to charge for online

content. For instance, News Corporation has declared that
it will start charging for news content by 2011 [1]. Several
other online businesses are likely to follow the same move to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

increase their revenues. This shift is, however, expected to
alienate a considerable number of online users.

While users might be willing to pay for low-cost special-
ized online products such as music and movies, they are not
keen on accepting subscription charges to read online news,
to sign in Facebook, etc. In fact, studies have shown that
only a small fraction of users—almost three percent—are
willing to pay to read online news [1, 3]. Users are also not
willing to set up and frequently recharge accounts for each
online commodity service that they use. These issues make
many commodity websites reluctant to charge for content
and/or registration. The challenge for most media and on-
line businesses lies, therefore, in extracting revenues from
their online content without alienating existing users.

In this paper, we consider this problem and we propose a
new framework that enables websites to“charge”for content,
thus increasing their revenues, without requiring subscrip-
tion charges from their users. Our scheme somehow departs
from current micropayment methods and offers online busi-
nesses an indirect form of remuneration—similar to the cur-
rent advertisement model. In our scheme (Figure 1), a user
wishing to access online content offered by a website does
not need to register or pay to access the website; instead,
he will accept to run some computations on behalf of the
website in exchange for access to the content. After verify-
ing the integrity of the results reported by the user, results
of the computations are gathered by the service provider
(or by a broker) and sent to a distributed computing part-
ner in exchange for a payment. The computations carried
out by the user could correspond to those used in the mul-
titude of available distributed computing platforms (such
as SETI@home [4], distributed.net [5], etc.); alternatively,
these computations could also be performed on behalf of
governmental agencies, research labs and private industries.
Note that, similarly to the existing advertisement model, a
third party could mediate the exchange between online ser-
vices and their computing partners. However, unlike the
targeted advertisement model where the (privacy-invasive)
user profiling increases revenues, our framework does not
require the content providers to intrude on the privacy of
users. Note that our scheme can be used as a complemen-
tary model to the existing advertisement model.

In this respect, our proposed scheme shares similarities
with “parasitic computing” [19, 33], where covert computa-
tions are executed on users’ machines without their con-
sent and knowledge. Our scheme, on the other hand, ex-
tends the notion of “parasitic computing” to offer users a
transparent—yet undisguised—micropayment method. The

Figure 1: Example of using microcomputations as a
payment scheme in online newspapers. Upon access-
ing the news website, the client’s browser performs
microcomputations. The results are then sent back
to interested third party in exchange of a payment.

main benefits of our scheme are as follows: (i) our scheme
is likely to boost the revenues of online services; in fact,
such a barter is likely to be more accepted by users—when
compared to subscription charges—by exploiting their will-
ingness to aid ongoing projects that have clear benefits (e.g.,
projects relating to HIV, cancer, clean energy, etc.). In
addition, our scheme enables users to state which compu-
tations/projects they prefer to support. (ii) Due to the
increasing reliance on distributed computing platforms to
solve computationally challenging projects, our scheme will
enable existing platforms to harness the idle computing power
of users for as long as these users are using online services
(e.g., while users are reading online news).
(iii) This entire process can be made transparent to the

users as the computations can be carried out within their
browsers. (iv) Finally, the advantage of malicious users in
mounting attacks against our scheme is negligible since the
targeted service corresponds to a low-cost commodity con-
tent.
Note that a thorough analysis of the economic viability of

our scheme is out of the scope of the paper; instead we show
in this work the feasibility of using microcomputations as a
micropayment method for online content.
In addition to proposing the use of microcomputations as

a micropayment scheme, we make the following contribu-
tions. We show that our proposed micropayment scheme
naturally supports the anonymity and the privacy of users.
Nevertheless, we show that the authenticity and the correct-
ness of the results submitted by the user can be verified—
irrespective of the purpose and the nature of the compu-
tations in question. We further demonstrate that this en-
tire process is transparent to users and does not require
any demanding hardware/software to be installed on their
machines. For this purpose, we implement a cross-browser
framework, using Google Web Toolkit [16], that allows web-
sites to perform computations without any need for addi-
tional plugins. In our implementation, the browser fetches
computations from a remote server and executes them using
the idle CPU of the user’s machine for as long as the user is

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

13

10
14

10
15

10
16

10
17

Percentage of Online Users that Adopt the Micro−Computations Scheme

F
L

O
P

S
 A

c
q

u
ir
e

d

Online Newspapers

Emails+Facebook+YouTube+Online Newspapers

Figure 2: Total Number of FLOPS acquired in
our scheme versus the number of Online Newspa-
per Viewers. For comparison purposes, the GIMPS
project [6] aggregates around 44 TFLOPS (44 · 1012

FLOPS).

accessing a specific online service. Finally, we performed a
preliminary user study to assess the usability of our model.

The remainder of this paper is organized as follows. In
Section 2, we describe the main intuitions behind our pro-
posed scheme. In Section 3, we present our framework and
we analyze its security and privacy implications. We imple-
ment our scheme and we assess its performance in Section 4.
In Section 5, we discuss additional insights to our proposals.
In Section 6, we overview related work in the area and we
conclude the paper in Section 7.

2. MOTIVATION
To better illustrate the benefits of our microcomputations

scheme, we consider an example where online newspapers
would require their clients to perform computations for as
long they access their content (i.e., their portal).

For the sake of this example, we assume that there are
60 million unique clients accessing online news per month,
and that each client spends on average 50 minutes per month
browsing the news sites [7]. Although the pricing for the cost
of computations is well understood (ranging between 0.1 and
0.3 $ per hour [8,9]), we rely in this example on a worst case
analysis and we estimate the market cost of computations by
the cost of electricity consumption of the machines involved
in the computations. On average, a computer is estimated
to use 100 watts per hour [10] and the cost of a kWh is
estimated to be 0.1 $ [11].

This suggests that the cost of computations can be lower-
bounded by 0.01 $ per hour.

In that case, online newspapers will be able to generate
1.5 million $ of revenues per month based on our proposed
model; when compared to online advertisements, this rev-
enue is equivalent to each of the 60 million users clicking on
almost 1 ad per month in the Google AdSense advertisement
framework [15].

Furthermore, assuming that the clients have machines that
are each capable of performing an average of 10 GFLOPS [18],
the total computing power harnessed in this case is equiv-

alent to 10·10
9
·60·10

6
·50·60

30·24·3600
≈ 7 · 1014 FLOPS (0.7 PFLOPS)

on average; this exceeds, by orders of magnitude, the col-
lective computing power harnessed by both SETI@home [4]
and the GIMPS project [6]. In Figure 2, we show the total
number of acquired FLOPS with respect to the fraction of
online users that adopt our scheme; for illustrative purposes,
we also include the equivalent number of acquired FLOPS

Figure 3: Our Model: when a user U accesses the
service provided by P, the service provider requires
that U runs microcomputations. The results of those
computations are communicated by the intermedi-
ary I to the customer C.

in case our scheme is integrated in FaceBook, YouTube and
major Email providers 1.

3. MICROPAYMENTS BASEDONMICRO-

COMPUTATIONS
In this section, we describe and analyze our solution based

on the use of microcomputations as a micropayment method.

3.1 System and Attacker Model
We consider the following system. A customer C (e.g., a

research lab or a private client) outsources tasks to a bro-
ker I; I acts as an intermediary between C and a service
provider P in exchange for financial remuneration. We as-
sume that the outcomes of the outsourced tasks are not
confidential; in Section 4, we show an example where the
instances of the tasks are kept secret.
When a user U accesses the service provided by P, P re-

quires that U contacts I and runs a subset of the outsourced
tasks—in the form of computations— on behalf of I’s cus-
tomers. These computations are carried out in the user’s
browser. In exchange for these computations, the users get
access to the service offered by P and I financially rewards
P. This process is shown in Figure 3. To ensure the security
of our system, (i) I (and/or C) needs to be able to efficiently
verify the outcomes of the outsourced computations and (ii)
I (and C) needs to ensure that any outsourced computa-
tion instance can only be used once by users (and by I) in
exchange for remuneration.
I has access to several independent tasks, pertaining to

different customers; these tasks could be either fully sequen-
tial or parallelizable or even hybrid tasks (i.e., contain both
sequential and parallelizable subroutines). Individual tasks
are independent of each others.
We further assume that these tasks are computationally

expensive but require moderate memory access. In general,
tasks that require modest memory access can be efficiently
outsourced and decomposed into microcomputations as they

1Here, we used the following estimates (adopted from online
reports): there are 5 · 108 Facebook logins per month, 109

YouTube video views per month and a total of 6, 5 · 108

emails (Gmail, Yahoo, Hotmail and AOL) exchanged per
month.

incur a relatively low communication overhead (as exempli-
fied in Section 4).

Throughout the rest of this paper, we assume a secure
channel between P and I (e.g., P and I can use pre-shared
keys) and we abstract away the details of the communica-
tion channel between U , P and I, such as delays, congestion,
jitter, etc. We further assume that P and I are motivated
to increase their benefit in the system and we assume the
existence of one or multiple colluding malicious users. These
users have knowledge of the measures used by I to prevent
potential tampering with the computations. We assume that
malicious users are motivated to cheat in order to access a
service without performing all of their assigned computa-
tions. For instance, a user might only execute 50 % of its
assigned computations and defect from running the rest of
its tasks. Here, two or more malicious users might collude
to increase their chances of not being detected.

3.2 Transforming Distributed Tasks into
Verifiable Computations

In what follows, we outline existing solutions that enable
efficient probabilistic verification of the remote execution of
parallel and sequential computations. In Section 3.3, we
will leverage on these solutions to ensure the security of our
scheme.

3.2.1 Verifying the Remote Execution of Parallel
Computations

Parallel computations consist of the evaluation of a func-
tion or algorithm f : D → R for every input value x ∈ D.
Subtasks are then created by partitioning D into subsets Di;
in other words, subtask i will evaluate f (or even a function
of f) for every input x ∈ Di.

The most efficient solution to verify the remote execu-
tion of parallel computations on the user’s machine is for
the supervisor of the computations I to rely on selective
redundancy or to selectively embed indistinguishable pre-
computed checks—ringers [24]—within the tasks of the nodes.
To verify the integrity of the computations, I chooses n uni-
formly distributed random values—the ringers—r1, r2, .., rn
from Di and computes the set S ← {f(r1), f(r2), .., f(rn)}.

2

Note that n is kept secret by P. The computations per-
formed by U will only be accepted if and only if ∀ri ∈ Di,
f(ri) is correctly computed.

Since U cannot distinguish the ringers from other data
values in Di, and does not know how many ringers are em-
bedded within the input space, U has to complete all of its
assigned work, with high probability, for its computations
to be accepted by I. By using the ringer scheme, the prob-
ability of detecting possible misbehavior by U is given by
P = 1 − (1 − Pc)

n, where Pc denotes the fraction of incor-
rect inputs returned by U .

A practical example of using ringers to secure remote cryp-
tographic computations is outlined in Section 4.

3.2.2 Verifying the Remote Execution of Sequential
Computations

A sequential task function f is given by f(x) = (g ◦h ◦ j ◦
k...)(x) where g(.), h(.), j(.), k(.) etc. are the constituent

2In case the computation of f(.) is not small enough, I can
proceed as outlined in [34]; it embeds few ringers initially in
a smaller input space and then uses the results reported by
various users as ringers in subsequent interactions.

Figure 4: N tasks assigned to Q participants. Each
box denotes a subtask. The notation “Subtask
(X,Y)” refers to subtask # Y of task # X. The gray
boxes refer to redundantly assigned subtasks.

sub-functions. “Hybrid” computations are considered as a
special instance of sequential computations since they con-
tain both sequential and non-sequential sub-functions.
Similar to their non-sequential counterpart, ringers could

also be used to secure the remote execution of sequential
computations. However, unlike parallel computations, ringers
can only be efficiently used when several sequential tasks are
permuted together and outsourced to users [30,34].
We now describe a scheme—adopted from the findings

in [30, 34]—for securing the remote execution of N distinct
and independent tasks on the remote machines of Q (Q ≥
N) different users. This scheme unfolds as follows:
I first divides each task into M smaller subtasks. This

can be achieved by decomposing the task into its smaller
functional components. I then proceeds to running the N

tasks on the machines of Q users in M consecutive rounds.
In round i, I picks an idle user and according to some

probability, it decides to verify its credibility by inserting
“security checks” within the computations; alternatively, it
can randomly assign to the participant a pending subtask.
In this scheme, P evaluates the credibility of a user by re-
questing that it runs a subtask whose results are already
known to I (a ringer) or by redundantly assigning the same
subtask to another user. Note that this process is transpar-
ent to users and that they cannot distinguish whether they
are running a legitimate subtask or whether their work is
being checked by I. Round i ends when all N users are
assigned a job. In this way, I checks the work of several
participants in each round.
At the beginning of round i+ 1, I collects the results re-

ported by the users and checks the correctness of the ringers
and the redundantly assigned subtasks. If these verifications
pass, I re-permutes the next logical subtasks (since each task
is sequential) among the users while using the corresponding
outputs of the last round as inputs to the subtasks of this
round. P repeats this process until all subtasks are executed
(Figure 4). Table 1 shows the probability of detecting ma-
licious users by using ringers (or selective redundancy) with
respect to various parameters. Further details on the perfor-
mance and efficiency of this scheme can be found in [30,34].

3.3 Our Scheme: Microcomputations as
Micropayments

Our proposed framework (Figure 6) comprises of the fol-
lowing modules:

The Customer Server C: The customer server C aggregates

Number of Ringers Probability of Detection
or Redundancy Cheating Probability
(per bundle)

1 1 1
3 0.5 0.875
5 0.5 0.96875
10 0.5 0.999

Table 1: Probability of detecting misbehavior (in
parallel and sequential tasks) using ringers and/or
selective redundancy with respect to different input
parameters.

and outsources different task jobs pertaining to various dis-
tributed computing projects. For instance, C could corre-
spond to the existing BOINC server [13] that hosts volunteer
grid computing projects.

The Intermediary I: The intermediary acquires work units
from C, and manages the outsourcing of computations to
the users. Namely, I splits the work units into microcom-
putations, embeds indistinguishable ringers or redundancy
among the computations, as described in the previous sec-
tions, and sends the computations to users. Later on, I ag-
gregates the individual results reported by users after check-
ing their integrity and dispatches the entire work unit result
to C. To prevent users from re-using previous microcompu-
tations as micropayments, I also keeps track of the micro-
computations that were previously outsourced3.

The Service Provider P: The service provider offers content
to various users (e.g. Facebook, online newspapers). In what
follows, we describe our scheme in greater detail.

Webpage Viewing.
We start by describing one possible way to display web-

pages to fit our proposed model.
We assume that the webpage content is split into parts;

users can fetch the subsequent parts manually as they browse
the content, e.g., through a “Next Page” button, once they
correctly perform the required microcomputations. An ex-
ample of displaying an online newspaper article is shown in
Figure 5. This abides by the current model adopted in on-
line newspapers where (i) the abstract (first page) of article
can be viewed free of charge while a full-article view requires
payment or registration and (ii) content is split between dif-
ferent pages that can be accessed manually through a“Next”
button. However, unlike current solutions, our model allows
users to pay as they browse (users only need to perform the
microcomputations for the pages that were loaded on their
browsers).

We further assume that the service provider always re-
sponds with the first part of the content whenever a new
session is started. Before serving subsequent parts, the ser-
vice provider ensures that users have correctly performed
the microcomputations. This prevents users from reading
the first part of the content without performing the compu-
tations, and then restarting a new session with P to read
the subsequent part and so on. Note that, except for the

3This is a common requirement in most existing distributed
computing platforms.

Figure 5: An example of displaying an online news-
paper article: the content is split into parts that
are fetched manually through a “Next Page” but-
ton. The framed pages can be accessible via a pub-
lic URL without the need to perform microcompu-
tations. Arrows model the various clicks performed
by users.

“free” pages, content is not loaded on the browser of the
user if there is no support for the tools that are required to
perform the computations (e.g., if JavaScript is disabled).

Scheme Description.
When a client U initially requests a service from P, P re-

sponds with the first part of the content, a link to a script
hosted by I, along with a session ID, SID. SID is a pseudo-
random identifier to identify the current session in subse-
quent interactions. P also informs I that a new session SID

has been initiated. Recall that the communication between
P and I is performed over a secure channel.
When U executes the script and contacts I, the latter then

outsources a challenge in the form of microcomputations to
U . These microcomputations run in the browser of U . When
completed, the results are sent back to I. In our scheme, we
assume that all the content offered by P has similar “value”
and as such is reimbursed with a pre-determined amount of
microcomputations4.
I checks the integrity of the computations as described

in the previous paragraphs. Note that the integrity verifica-
tion of the computations can be performed very efficiently
through table-lookup, since I already knows the solution to
the ringer problems. I then informs P of the outcome of
the verification. If the verification passes, P accepts further
requests for content from U . In that case, the entire process
re-iterates as shown in Figure 6. We analyze the security
properties of our scheme in Section 3.4.
We point out that the efficiency of outsourcing the mi-

crocomputations and the load incurred on I in this case is
comparable to those incurred in existing distributed comput-
ing platforms (e.g., the SETI@home server). In fact, these
servers already embed enough functionality to allocate, as-
sign and collect sub-computations from millions of users. We

4Alternatively, I can assign different computation loads de-
pending on the content “value” or the period during which
the content is being accessed.

further note that, in our scheme, ringer units are also em-
bedded within the work bundles that are outsourced from C
to I. The fraction of ringers units inserted by C could be as
low as 5 %, when compared to the fraction of ringers needed
to ensure the correctness of the microcomputations that are
run by the users (typically ≥ 30 %). This is the case since
users can “whitewash” their history, simply by restarting a
new session with P. The intermediary I, on the other hand,
has a unique and fixed identity; it suffices for C to detect
misbehavior by I once to stop interacting with it (e.g., I
might face a legal case).

Remark. In our scheme, U can make a choice with respect
to which project/computations it would like to run. For ex-
ample, a small tab that is loaded with the accessed pages
can list all possible computing projects that U can partici-
pate in. If U does not provide any choice, I assigns subtasks
given its default scheduling strategy.

3.4 Security and Privacy Considerations
In what follows, we analyze the security and privacy of-

fered by our proposed scheme.

Security.
Given our scheme, a user can perform the computations

once, save the content locally, and subsequently re-post the
content (without the corresponding script) to other users
that it colludes with. Furthermore, since the communica-
tion between the users and (P, I) is not performed over a
secure channel, a user A can perform a Man-In-The-Middle
(MITM) attack to impersonate another user B in order to
access content without performing the required microcom-
putations5. We argue, however, that the advantage of A in
performing all these attacks is negligible; the effort in mount-
ing such attacks exceeds, by far, the outcomes since the tar-
geted service corresponds in our case to low-cost, commod-
ity content that is currently public. In that respect, securing
the communication between U and (P, I) can be seen as an
expensive commodity when compared to the advantage of
users in performing such attacks. Nevertheless, since imper-
sonation and MITM attacks can be immediately detected by
users (new content does not load on their browsers), users
can switch to secure communication (e.g., HTTPS) with I
and P to circumvent such attacks.

One major security requirement here is to verify the re-
sults reported by users. Since the microcomputations are
bundled in the users’ browsers, users can easily misreport
the outcomes (e.g., by directly editing the page source code
from the browser). In our scheme, ringers (and selective
redundancy) efficiently ensure, with high probability, the
integrity of remote generic computations —in spite of collu-
sion among users. Since the intermediary I keeps pointers
to the previously outsourced computation, users cannot re-
use results pertaining to past computations in exchange for
content. This is often referred to in the literature as the
“double-spending” problem, where users re-use “expired” to-
kens as payments. This problem is inherently countered by
the use of ringers—even if I does not keep track of previously
solved computations. This is the case since the ringers are

5One possible alternative would be for user B to send its
results along with an HMAC using SID as a key. However,
this solution is only effective when user A cannot eavesdrop
on the channel between B and P.

Figure 6: Our Microcomputations Scheme: when a client U requests a service from the service provider P,
P informs the intermediary I that a new session SID has been initiated. I then outsources a challenge in
the form of microcomputations to U . These computations are chosen from the pool of tasks available at the
customer server C (e.g., BOINC [13]). Further requests by the user are only accepted if the results of the
computations are correct.

indistinguishably unique in each outsourced subtask; even if
users can predict the algorithm to be executed along with
its input instances, they cannot predict which ringer values
to report to I. This also prevents users from generating and
running fake computations—while claiming that these com-
putations were outsourced by I. In general, it can be easily
shown that the use of ringers ensures, with high probability,
the integrity and the authenticity of the remote microcom-
putations.
We conclude that, in our scheme, rational users cannot

acquire content without “correctly” performing the required
microcomputations.
On the other hand, the use of ringers also prevents I from

reporting incorrect work unit results to the customer C since
such a misbehavior will be detected with high probability.
Note that a service provider might try to impersonate an-
other provider in order to increase its revenues. This will
be immediately detected since the communication between
service providers and I is performed over a secure channel.
Furthermore, unlike the advertisement model, our model al-
lows both P and I to keep track of the number of page
accesses; P and I can then compare the number of page
requests to settle disputes. In this respect, since our micro-
payment scheme is based on“verifiable”microcomputations,
P cannot over-charge I without committing enough of its
time and resources to correctly execute the microcompu-
tations. This also suggests that our scheme is resilient to
Denial-of-Service (DoS) attacks; the verifiable microcompu-
tations act as computational puzzles [28] that ensure that an
attacker commits a considerable amount of resources, when
compared to I, before its request is served.

Privacy.
Current advertisement platforms perform extensive user-

profiling and tracking [27] to build a fine grained user profile.
In contrast, our micropayment scheme inherently supports
the privacy of the users and does not embed any incentive
for any party to perform user-profiling. This is the case
since the ongoing microcomputations are independent by
construction of the users’ preferences and profiles. Further-
more, the users do not need to register or create accounts to
“pay” in exchange of content in our scheme.

As shown in Section 3.3, the communication between P
and I solely contains a temporary session identifier; this
identifier is changed in every established session and there-
fore cannot be used for tracking purposes. As such, the
only knowledge that is leaked to P and I corresponds to the
content that is being accessed, the IP of the user and some
information about the users’ browsers and/or the compu-
tational loads on the users’ machines6. In order to further
increase their privacy, users could access content and per-
form the computations using anonymizing networks.

4. PROTOTYPE DESIGN & EVALUATION

4.1 Prototype Description
To evaluate our scheme, we implemented a prototype that

acts as a stand-alone server that distributes RC4 brute-force
key search to browsers of the users in exchange of access-
ing content. Our implementation is based on the Google
Web Toolkit (GWT) [16]. GWT allows to develop both the
server-side and the client-side code in JAVA. The client-side
code is then compiled to JavaScript code to be interpreted
directly by the web-browser, without the need of further
client-side support (e.g., this enables our framework to di-
rectly link with the BOINC platform). GWT also handles
automatically the differences in JavaScript support from dif-
ferent browser’s version and providers

Figure 7 depicts the architecture of our test prototype.
Note that our implementation was based on a variant of the
framework in Figure 6; here, we assume that P, I and C are
co-located on the same server and thus our prototype imple-
mentation abstracts away the communication between these
entities. Since users are generally equipped with various ma-
chines and network connections (e.g., university network,
broadband access, etc.), the main aim of our prototype im-
plementation is to analyze and evaluate the performance and
usability of our proposals from a user’s perspective. Namely,
the objectives of our preliminary evaluation were (i) to get
an initial user feedback on the acceptability and usability
of the scheme and (ii) to evaluate network latency and the
load that is incurred by our scheme.

6This information leakage is not particular to our scheme
and applies generically when users browse the web [21].

Figure 7: Prototype Design: Our prototype was implemented using the Google Web Toolkit (GWT) [16].
Our implementation is based on a variant of the framework presented in Figure 6; here, we assume that P,
I and C are co-located on the same server.

Construction of the Computation Bundles.
In our prototype implementation, the outsourced micro-

computations consist of N sets of {Kr,C⊕P} where P is a
given plaintext, C is its corresponding ciphertext encrypted
with RC4 using a key k, and Kr is the assigned key-search
space. Users have to check, for each of their assigned search

spaces, {∀k̂ ∈ Kr|C ⊕ P
?
= RC4(k̂)}. If a solution is found,

the key is returned to the server. As described in [29], this
scheme enables a privacy-preserving cryptographic search
for the key, since it does not reveal the plaintext P to any
entity that is involved in the cryptographic search.
Here, n ringers are constructed by encrypting a random

plaintext Pr with a random key kr to obtain the ringer’s
ciphertext Cr.

Evaluation Setup.
To evaluate our prototype, we constructed a webpage that

hosts a computer science book chapter. The chapter is bro-
ken into pages that are displayed as JPEG images and that
can be navigated through a “Next Page” button. When
users click that button, JavaScript computations automat-
ically run for approximately 15 seconds on their browsers;
the button is only enabled when the computations are cor-
rectly performed and returned to the server. After the last
page of the chapter is loaded, the “Next Button” points to a
page that hosts the questions shown in Table 3.
Our preliminary evaluation consisted of three experiments.

In the first experiment, we sent the link of our test webpage
to our research group comprised of 10 computer science PhD
students and post-docs. For the purpose of this experiment,
50 % of the users were randomly chosen not to perform any
computations; in that case, the “Next Button” was simply
disabled for 15 seconds.
In the second experiment, we sent the link of our test

webpage to 32 students that were attending a computer sci-
ence course at ETHZ. These were Masters and Bachelors
students affiliated with various departmental tracks. The
students were informed that they had to read the book chap-
ter as an exercise for the lecture and that they have to give

some answers at the end of their reading. They were also
informed that the ‘Next Button” will only be enabled after
some time, to ensure that they are actually reading each
page of the chapter. In this experiment, the subjects had
to answer a technical question related to the contents of the
chapter along with the question included in second row of
Table 3. 25 % of the subjects were randomly chosen not to
perform any computations as a test group. To ensure that
the purpose of the experiment was not visible to students,
the remaining questions were asked in person at the end
of the following lecture. In both experiments, the subjects
were not hinted that they might be running computations
on their browsers. Finally, in a third brief experiment, we
accessed our webpage from an Android 2.2 smartphone, an
Apple Iphone and from an IPad to evaluate the phones’ CPU
busy time.

4.2 Evaluation of our Scheme
Table 2 summarizes the statistics that we collected from

our preliminary experiments. In total, the computing server
served 1548 requests pertaining to 92 different users. Each
request was served in 8.34 ms, totaling an aggregate server
busy CPU time of approximately 13 seconds. The aggregate
time that all users spent in performing the computations was
188 minutes, which enabled them to test for approximately
226 RC4 keys. In this case, the ratio of the CPU time ex-
pended by JavaScript clients when compared to the server
time is 867 (i.e., 1 day of server computation corresponds to
2.3 years in clients’ computations time). While we acknowl-
edge that faster implementations (e.g., using a specialized
plugin that implements algorithms in native code) could be
built, we note that even the relatively “slow” JavaScript-
based environment can efficiently host the outsourcing of
microcomputations.

Furthermore, in our experiments, the total network over-
head was marginal (8.65 MB). This corresponds to 80 KB
of static microcomputation script per session (that is loaded
and cached by browsers). However, even bigger script sizes,
e.g., of 200 KB (corresponding to more complex microcom-

Total Number of Keys Searched 226 keys
Number of Data Bundles Sent 1548
Number of Individual Sessions 92
Aggregate Computation Time 188 minutes
Total Network Load 8.65 MB
Average Server CPU Time 8.34 ms per request
Average User CPU Time 15 s per request

Table 2: Prototype Deployment Statistics

putations), do not result in any noticeable performance degra-
dation in our scheme when compared to the online advertise-
ment model, provided that the computations require moder-
ate memory usage. In fact, an estimated average of 300 KB
of advertisement content is loaded on the browser of users
on each page load7.
In the third experiment, we noticed a maximum CPU us-

age of 75 % on the tested phones during which all devices
remained fully responsive. We therefore observe that our
scheme also results in acceptable browsing experience on
smart phones.

Preliminary User Study Results.
The results of the preliminary user study that we con-

ducted are shown in Table 3. Our findings suggest that (i)
the ongoing microcomputations did not affect the browsing
experience of subjects since no subject noticed them and
(ii) most subjects are unlikely to be alienated by our micro-
payment scheme and as such our scheme seems to be well
suited for browsing online newspapers or reading ebooks,
where users are likely to spend some time on each page.
An interesting observation was that the vast majority of

the subjects—even those that were reluctant on using our
scheme—showed interest in adopting the microcomputations
model when it is used to support socially beneficial projects.
Most subjects wanted to be aware of what their browsers
were running and preferred to have choice with respect to
the purpose of the computations they would be running. As
mentioned in Section 3.3, our scheme enables users to choose
which computations to support on their browsers, thus en-
hancing the acceptability of our micropayment model.

Limitations of our study: Although these results are
encouraging, we acknowledge that they are only preliminary
given the limited number of subjects and given the fact that
the subjects were mostly computer science students.
There are also a number of factors that we did not con-

sider in this initial user study. For instance, one pertinent
question here is whether users prefer slower browsing, that
is somehow unavoidable in the microcomputations scheme,
rather than simply paying for online services or viewing ad-
vertisements. Another important factor relates to the load
incurred by these computations given a number of concur-
rent web-browsing sessions that are run simultaneously by
users (e.g., users opening several tabs). To draw more de-
cisive conclusions on the acceptability and usability of our
scheme when compared to other possible alternatives (refer

7Due to the absence of references, this estimate was obtained
empirically by averaging the size of advertisements that were
embedded in three major online news sites (NY Times, BBC,
Le Monde) and fetched by browsers on each page load.

Evaluation Yes No
Did users detect that

0 (0)% 100 (100)%
computations were running?
Did users experience unusual

0 (0)% 100 (100)%
CPU load?
Would users generally agree

85 (70)% 15 (30)%to run computations as a
way of payment?
Would users generally agree to

97 (95)% 3 (5)%run computations to support
existing research efforts?
Was it unethical to execute

72 (80)% 28 (20)%code without the consent
of the users?
Would the users like to be

96 (100)% 4 (0)%
aware of the computations?

Table 3: Preliminary user study results. Numbers
between parentheses correspond to the results from
Experiment 1, numbers without parentheses denote
the results from Experiment 2.

to Section 5), we plan to address these issues in a prospective
large-scale study.

5. DISCUSSION
In what follows, we briefly discuss further insights with

respect to our proposed scheme.

Marketplace for Computations.
In our scheme, since the microcomputations are carried

out as the users browse content, the users would have to wait
for the computations to complete before viewing subsequent
content. Here, one potential limitation lies in the fact that
this payment scheme favors users that are equipped with fast
machines; those users are more likely to perform the com-
putations faster and therefore to browse more at ease when
compared to users that are equipped with “slower” (and/or
energy-constrained) machines. One possible solution to en-
sure fairness among heterogeneous users is to estimate their
computing performance from the time it took them to com-
plete the assigned microcomputations and adjust their dif-
ficulty accordingly. Other techniques to securely verify the
computing performance of remote devices have been recently
reported [28].

Another natural solution to this problem—which some-
how departs from our current scheme—would be to rely on
a marketplace to sell “computational tokens”; computations
can be carried out by users “offline” in exchange of tokens
that users can use subsequently to access online content from
any other devices they possess (e.g., a PDA device). We are
currently investigating the feasibility of efficiently creating
verifiable and anonymous tokens for generic computations.

Towards a Larger Computing Force.
We believe that our prototype implementation can also

accommodate for many types of computationally intensive
tasks, namely those pertaining to existing distributed com-
puting platforms since our scheme incurs comparable func-
tionality and efficiency when compared to current projects.

We do acknowledge that it might not be straightforward

to embed ringers in all classes of computations; in that case,
redundantly assigning subtasks among users could be used
as a mean to transform any task into a probabilistically ver-
ifiable computation [25]. As a proof of concept, we are cur-
rently extending our prototype implementation to accommo-
date for the use of various distributed projects to generate
microcomputations.
Note that the premise of performing microcomputations

extends well beyond simply browsing online pages. Users
could be encouraged to run computations as they listen to
an MP3 song (in that case, the computations are embedded
in the MP3 bundle) or when streaming a YouTube video.
Currently, several distributed computing projects are con-

tinuously seeking to recruit additional volunteers to help in
various areas such as biology, mathematics, medicine, cryp-
tography, physics, science, etc. Our work therefore indi-
rectly motivates for the need to support ongoing scientific
projects, namely by offering them higher exposure. If all
popular services, such as Facebook, YouTube, etc. adopt a
variant (even based on voluntary participation) of our pro-
posed scheme, then serious advances in several scientific or
socially-beneficial projects might be reached in few years.

6. RELATEDWORK
The emergence of cloud-computing infrastructures moti-

vated the use of distributed computing as a way to generate
revenues by managing the distributed computations of pri-
vate clients and businesses [8, 12].

Security in Distributed Computing.
The literature contains several contributions that deal with

security of outsourced computations in distributed systems.
Golle et al. [24] propose to secure a specific class of paral-
lel problems that are run on remote servers: inverse one-
way functions, where helper nodes are required to com-
pute the pre-images of several one-way functions. This so-
lution is extended in [30, 34] to secure sequential computa-
tions. Goodrich et al. [25] discuss mechanisms to duplicate
tasks among participants in grid computing applications as
a mean to efficiently counter collusion among malicious par-
ticipants. Gennaro et al. [22] introduce the notion of a “ver-
ifiable computation scheme” as a mean of enabling privacy-
preserving outsourcing of computations to untrusted work-
ers. Karame et al. [29] propose a scheme to outsource cryp-
tographic searches to untrusted nodes without these nodes
learning information about the inputs nor the outputs of the
search functions. A distributed DES cracker that runs on
browsers has been proposed in [14]. Provos et al. [33] an-
alyze threats that originate from omnipresent scripts that
run on the browsers of users.
Hashcash [17] is a proof-of-work system designed to limit

email spam and denial of service attacks. Centmail [23]
proposes to introduce certified microdonations as a way to
combat spam emails. Bitcoin [32] is a peer-to-peer network
based on digital currency; it makes use of computations
to alleviate double-spending in digital payments. Horton
et al. [26] show that Java applets in web-browsers can be
used to perform covert distributed computations without
the knowledge of users. They also briefly describe the no-
tion of “Computing for Sale”. Similarly, Barabasi et al. [19]
show how to achieve parasitic computing—a form of en-
forced covert computing—simply by manipulating the TCP
checksum field of packets.

Online Advertisements.
Recently, several works propose the design of private ad-

vertising systems. Databank [31] proposes a business “pri-
vacy”model in which the service provider pay the clients in
exchange of their private information; their scheme provides
additional incentives for the advertisers to protect the pri-
vacy of the clients. Adnostic [35] is an ad targeting model
that creates and maintains user profiles locally. A proxy
orchestrates all potential communication between the users
and the service provider; the proxy is, however, assumed not
to collude with the service providers.

7. CONCLUSION
In this work, we proposed and analyzed a new micro-

payment model based on microcomputations that can be
transparently integrated within current web-browsers. In
our model, a user wishing to access online content offered
by a website does not need to register or pay to access
the website; instead, he will accept to run some compu-
tations on behalf of the website in exchange for access to
content. We analyzed the security of our proposal and we
showed that—unlike the current advertisement model—our
model inherently supports the privacy of users. In addition,
we implemented a preliminary prototype and we evaluated
the performance and usability of our proposed model. Our
initial findings indicate that our scheme did not affect the
browsing experience of users and is likely to be adopted by
a large fraction of online users.

As a next step, we plan to extend our implementation to
accommodate for the use of other computations from the
large pool of existing distributed computing projects. We
also plan to conduct a large scale user study to better assess
the acceptability of our proposed scheme. In that respect,
we believe that our proposed model also has clear benefits
in supporting those ongoing distributed computing projects
that are expected to impact the way we live our lives today.
We therefore hope that our findings will motivate further
research in this direction.

8. ACKNOWLEDGMENTS
The authors thank Victor Budilivschi for implementing

and deploying the prototype. The work presented in this
paper was supported (in part) by the Swiss National Science
Foundation under Grant 200021-127294.

9. REFERENCES

[1] Murdoch: Web sites to Charge for Content, http://
edition.cnn.com/2009/BUSINESS/05/07/murdoch.

web.content/index.html.

[2] Forrester Research, http://forrester.typepad.com/
groundswell/2008/12/people-dont-tru.html.

[3] The Economics of Online News, http://www.
pewinternet.org/Reports/2010/

5--The-economics-of-online-news.aspx.

[4] SETI@home, http://setiathome.ssl.berkeley.
edu/.

[5] Distributed.Net, http://distributed.net/.

[6] The Great Internet Mersenne Prime Search, http://
www.mersenne.org/prime.htm.

[7] Online Newspaper Viewership Reaches Record in
2007, http://www.naa.org/PressCenter/

http://edition.cnn.com/2009/BUSINESS/05/07/murdoch.web.content/index.html
http://edition.cnn.com/2009/BUSINESS/05/07/murdoch.web.content/index.html
http://edition.cnn.com/2009/BUSINESS/05/07/murdoch.web.content/index.html
http://forrester.typepad.com/groundswell/2008/12/people-dont-tru.html
http://forrester.typepad.com/groundswell/2008/12/people-dont-tru.html
http://www.pewinternet.org/Reports/2010/5--The-economics-of-online-news.aspx
http://www.pewinternet.org/Reports/2010/5--The-economics-of-online-news.aspx
http://www.pewinternet.org/Reports/2010/5--The-economics-of-online-news.aspx
http://setiathome.ssl.berkeley.edu/
http://setiathome.ssl.berkeley.edu/
http://distributed.net/
http://www.mersenne.org/prime.htm
http://www.mersenne.org/prime.htm
http://www.naa.org/PressCenter/SearchPressReleases/2008/Online-Newspaper-Viewership.aspx

SearchPressReleases/2008/

Online-Newspaper-Viewership.aspx.

[8] Capcal – How Testing is done on the Cloud, http://
www.capcal.com/.

[9] Amazon Elastic Compute Cloud (Amazon EC2),
http://aws.amazon.com/ec2/#pricing.

[10] How much electricity does my computer use? ,
http://michaelbluejay.com/electricity/

computers.html.

[11] Electricity Costs in the United States , http://www.
think-energy.net/electricitycosts.htm.

[12] United Devices, Inc, Company Profile, http://biz.
yahoo.com/ic/105/105503.html.

[13] BOINC. http://boinc.berkeley.edu/.

[14] Browser-Based Distributed DES Cracker. http://
descrack.justinsamuel.com/.

[15] Google AdSense. http://en.wikipedia.org/wiki/
AdSense.

[16] Google Web Toolkit. http://code.google.com/
webtoolkit.

[17] Hashcash. http://www.hashcash.org/.

[18] MaxxPI, TOP10, FLOPS. http://www.maxxpi.net/
pages/result-browser/top10---flops.php.

[19] A. L. Barabasi, V. W. Freeh, H. Jeong, and J. B.
Brockman. Parasitic Computing. In Nature, volume
412, pages 894–897, 2001.

[20] E. Clemons. Why Advertising is failing on the
Internet?, 2009. http://techcrunch.com/2009/03/
22/

why-advertising-is-failing-on-the-internet/.

[21] P. Eckersley. How Unique Is Your Web Browser? In
Proceedings of PETS, 2010.

[22] R. Gennaro, C. Gentry, and B. Parno. Non-Interactive
Verifiable Computing: Outsourcing Computation to
Untrusted Workers. In Proceedings of the CRYPTO
Conference, 2010.

[23] S. Goel, J. Hofman, J. Langford, D. M. Pennock, and
D. M. Reeves. Centmail: Rate Limiting via Certified
Micro-Donations. In Proceedings of CEAS, 2009.

[24] P. Golle and I. Mironov. Uncheatable Distributed
Computations. In Proceedings of RSA, 2001.

[25] M. T. Goodrich. Pipelined Algorithms to Detect
Cheating in Long-Term Grid Computations. In
Theoretical Computer Science, LNCS, Springer, 2008.

[26] J. Horton and J. Seberry. Covert Distributed
Computing Using Java Through Web Spoofing.

[27] S. Kamkar. Evercookie – Never Forget. http://samy.
pl/evercookie/.

[28] G. Karame and S. Capkun. Low-Cost Client Puzzles
based on Modular Exponentiation. In Proceedings of
ESORICS, 2010.

[29] G. Karame, S. Capkun, and U. Maurer.
Privacy-Preserving Outsourcing of Crytographic
Searches. In ETH Zurich, D-INFK, Technical Report
No. 662, 2010.

[30] G. Karame, M. Strasser, and S. Capkun. Secure
Remote Execution of Sequential Computations. In
Proceedings of ICICS, 2009.

[31] R. M. Lukose and M. Lillibridge. Databank: An
Economics Based Pirvacy Preserving System for

Distributed Relevant Advertising and Content. In
Technical Report, HP Laboratories, 2006.

[32] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash
System. 2009.

[33] N. Provos, D. McNamee, P. Mavrommatis, K. Wang,
and N. Modadugu. The Ghost in the Browser:
Analysis of Web-based Malware. In Proceedings of
HotBots, 2007.

[34] D. Szajda, B. Lawson, and J. Owen. Hardening
Functions for Large Scale Distributed Computations.
In Proceedings of the IEEE Symposium on Security
and Privacy, 2003.

[35] Vincent Toubiana, Arvind Narayanan, Dan Boneh,
Helen Nissenbaum, and Solon Barocas. Adnostic:
Privacy Preserving Targeted Advertising. In Network
and Distributed System Security Symposium (NDSS),
2010.

http://www.naa.org/PressCenter/SearchPressReleases/2008/Online-Newspaper-Viewership.aspx
http://www.naa.org/PressCenter/SearchPressReleases/2008/Online-Newspaper-Viewership.aspx
http://www.capcal.com/
http://www.capcal.com/
http://aws.amazon.com/ec2/#pricing
http://michaelbluejay.com/electricity/computers.html
http://michaelbluejay.com/electricity/computers.html
http://www.think-energy.net/electricitycosts.htm
http://www.think-energy.net/electricitycosts.htm
http://biz.yahoo.com/ic/105/105503.html
http://biz.yahoo.com/ic/105/105503.html
http://boinc.berkeley.edu/
http://descrack.justinsamuel.com/
http://descrack.justinsamuel.com/
http://en.wikipedia.org/wiki/AdSense
http://en.wikipedia.org/wiki/AdSense
http://code.google.com/webtoolkit
http://code.google.com/webtoolkit
http://www.hashcash.org/
http://www.maxxpi.net/pages/result-browser/top10---flops.php
http://www.maxxpi.net/pages/result-browser/top10---flops.php
http://techcrunch.com/2009/03/22/why-advertising-is-failing-on-the-internet/
http://techcrunch.com/2009/03/22/why-advertising-is-failing-on-the-internet/
http://techcrunch.com/2009/03/22/why-advertising-is-failing-on-the-internet/
http://samy.pl/evercookie/
http://samy.pl/evercookie/

	1 Introduction
	2 Motivation
	3 Micropayments based on Microcomputations
	3.1 System and Attacker Model
	3.2 Transforming Distributed Tasks into Verifiable Computations
	3.2.1 Verifying the Remote Execution of Parallel Computations
	3.2.2 Verifying the Remote Execution of Sequential Computations

	3.3 Our Scheme: Microcomputations as Micropayments
	3.4 Security and Privacy Considerations

	4 Prototype Design & Evaluation
	4.1 Prototype Description
	4.2 Evaluation of our Scheme

	5 Discussion
	6 Related Work
	7 Conclusion
	8 Acknowledgments
	9 References

